
Understanding and affecting the

accuracy/speed trade-off of

object detectors for self-driving

cars

Xurui Yan

Master of Science

Informatics

School of Informatics

University of Edinburgh

2019

Abstract

Vision-based self-driving cars take advantage of cameras combined with object

detection engine to detect cars, persons, traffic lights, etc in the environment. This

application requires the object detector to have high accuracy and low latency in order

to avoid accidents.

The main aim of this project is to investigate different ways to trade-off between ac-

curacy and speed, including modifying both the model and input images, for a state-of-

the-art object detector, YOLO. We evaluated the performance of YOLO on the Berke-

ley DeepDrive (BDD) dataset while varying the number of detection layers and an-

chors (i.e., bounding box priors), image resolution and applying image enhancement

techniques. Many of our findings have not been reported elsewhere. We found that

additional detection layers can improve the detection accuracy significantly because

small objects are detected on a fine-grained feature map. The performance is quite

robust to the number of anchors generated by clustering methods like K-Means. Image

resolution is one of the most effective ways of affecting the accuracy/speed trade-

off. Higher resolution usually yields better performance but too high resolution may

also lead to worse performance. Among the two image enhancement techniques we

applied, deblurring should help provided that a good deblurring method exists while

contrast enhancement, surprisingly, does not help.

Part of the aim is to compare YOLO with RetinaNet which can achieve much higher

accuracy on the COCO object detection competition. Our experiment failed to demon-

strate the advantage of RetinaNet on BDD dataset in either accuracy or speed. Since

fair comparison is very difficult, some suggestions are discussed when selecting the

right object detection method.

Our final YOLO model that combines several optimization techniques we have

learned in this study achieves 25.75 mAP@0.75 and 43 FPS and surpasses the third

place on the WAD Road Object Detection challenge leaderboard, indicating the signif-

icance of our work.

It is hoped this research will contribute to a deeper understanding of the accura-

cy/speed trade-off of object detectors and provide practitioners who are building object

detection systems for self-driving cars with some insights into tuning YOLO to achieve

high accuracy while still running in real time.

i

Acknowledgements

I would like to sincerely thank my supervisor, Professor Boris Grot, for his excel-

lent guidance and feedback throughout the dissertation as well as his GPU resource

without which this project could not be completed. I am very grateful to have had the

opportunity to learn so much about both research and writing from him in the past few

months.

I would also like to express my gratitude to my personal tutor Tom Spink for read-

ing my dissertation and providing some comments, to Artemiy Margaritov for his in-

sightful suggestions and availability to help, to Jamie Norris for sharing information

during this project.

Finally, I would like to thank my family and friends for their unwavering support.

ii

Table of Contents

1 Introduction 1

2 Background 4
2.1 Evaluation Metric . 4

2.2 Object Detection Methods . 6

2.3 Object Detection for Self-driving Cars 8

2.4 Accuracy/speed Trade-off . 8

3 Dataset 10
3.1 Berkeley DeepDrive Dataset . 10

3.2 Data Analysis . 11

3.3 Class Imbalance . 13

4 Algorithm 14
4.1 Networks . 14

4.1.1 Feature Extractor . 14

4.1.2 Detection Network . 16

4.2 Yolo Layer . 16

4.2.1 Anchor . 16

4.2.2 Prediction . 17

4.2.3 Loss Function . 19

4.3 Data Augmentation . 20

5 Experiments and Results 21
5.1 Baseline . 21

5.2 Detection Scales . 26

5.3 Anchor Density . 27

5.4 Image Resolution . 28

iii

5.5 Image Enhancement . 29

5.5.1 Deblurring . 30

5.5.2 Contrast Enhancement . 31

5.6 Comparison with RetinaNet . 32

5.7 Final Model . 34

6 Conclusion 37
6.1 Findings . 37

6.2 Limitations . 39

6.3 Future Work . 39

6.4 Things That Did Not Work . 40

Bibliography 41

A Supplementary Materials 46

B Examples 49

iv

Chapter 1

Introduction

In recent years, there has been an increasing interest in self-driving cars which are

expected to revolutionize the way of mobility in the future even though they are still

largely under experiment. Because of the great success in computer vision, a vision-

based self-driving car which senses the environment using cameras becomes the latest

research trend [1]. Therefore, object detection is the key component of a self-driving

car to detect pedestrians, vehicles, traffic lights and other objects of interest around the

car from the vision information captured by the camera.

However, existing object detection methods remain a bottleneck in such applica-

tions due to the real-time processing requirements. Recent research [1] suggests that

the latency of the self-driving system should be less than 100ms in order to react fast

enough to avoid traffic accidents. This speed requirement presents challenges to mod-

ern object detection algorithms based on neural networks which are very computation-

ally intensive. Driven by object detection competition such as COCO challenge, recent

advances in object detection have put too much emphasis on accuracy and only a few

of them take speed into account [2]. Faster R-CNN [3] is the first attempt towards

real-time object detection and, later, one-stage object detectors, such as YOLO (You

Only Look Once) [4] and SSD [5], reach the real-time milestone with relatively low

accuracy. Another one-stage detector RetinaNet [6] shares many similar architecture

designs with previous detectors but features a novel focal loss function. Its accuracy

on COCO dataset surpasses previous state-of-the-art detectors such as Faster R-CNN

and DSSD [7]. Recently, the third and latest version of YOLO, YOLOv3 [8], has made

a huge improvement in accuracy and is still fast enough to be run in real time, which

makes it the most suitable candidate for object detection engine in the self-driving sce-

nario. In the remainder of this dissertation, the term YOLO will refer to YOLOv3

1

Chapter 1. Introduction 2

specifically. However, previous research [1] shows that its latency can not meet the

design constraint (i.e., 100ms) of self-driving systems when using high-res images as

input even if it is running on the GPU platform. Since it is not easy to improve the

speed for existing methods or hardware platforms, there is an urgent need to select the

appropriate configurations for YOLO that balance the detection accuracy and through-

put in a real time application like self-driving system.

Extensive research [8, 6, 9, 2] has shown that image resolution has a significant

impact on the accuracy and speed of object detection. In particular, a common way to

trade accuracy for speed is reducing the image size before feeding it into the network.

However, little is known about how other aspects can influence the accuracy/speed

trade-off.

From the perspective of a practitioner, both the model configurations and data pre-

processing can be taken into consideration to achieve the right accuracy/speed balance

for a specific application. One solution is to focus on the model itself which can be con-

figured to achieve higher accuracy or lower latency. Most one-stage object detection

methods, including YOLO, predict objects at different scales in the feature pyramid

based on a number of anchors (i.e., predefined bounding boxes). Evidence [10] sug-

gests that multi-scale detection is among the most important architecture designs for

detecting objects of different sizes. YOLO detects objects at three different scales by

default and additional scales may help to improve the accuracy. Another key design

concept is anchor and it was shown that anchor density can affect the performance by

covering different object scales and aspect ratios [6]. The other solution is adjusting

the input images during inference. Since YOLO can be trained or tested at different

resolutions, resizing the input images offers an easy way to trade-off between accuracy

and speed. In addition to resizing, another important data preprocessing technique is

image enhancement, such as deblurring and contrast enhancement, which can signifi-

cantly improve the quality of images for human eyes and might benefit the performance

of object detection as well.

The primary objective of this project is to investigate various ways to affect the

accuracy/speed trade-off for a modern object detection system, specifically YOLO.

To this end, we evaluate the performance of YOLO by measuring the accuracy and

speed as a function of different detection scales, anchor density, image resolution,

whether performing image enhancement or not on the large-scale Berkeley DeepDrive

(BDD) dataset [11] developed for the purpose of self-driving. Other choices of trade-

off such as ensemble or multiple inference1are not considered because they are too

Chapter 1. Introduction 3

computationally expensive to be used in a real-time application.

Since RetinaNet may also be a competitive candidate for our application, the sec-

ond objective is to compare the performance of YOLO with RetinaNet on BDD dataset

and decide which is preferable. To demonstrate the important implications of this study

for practitioners, the last objective is to train a model that is expected to be more accu-

rate and also faster than existing methods for the BDD road object detection challenge

by combining those improvements we have learned in this project.

Our main contributions include:

• This study is the first to explore various ways of trade-off between accuracy and

speed for YOLO and will contribute to a better understanding of the accura-

cy/speed trade-off for an object detector.

• We present a comparison between YOLO and RetinaNet and our findings will

provide insights into selecting the right object detection system.

• We show how several optimization techniques are combined together to train an

object detection system that can achieve very good accuracy (25.75 mAP@0.75

measured on BDD test set) and in the meanwhile, run in real time (43 FPS).

The remainder of the document is organized as follows. Chapter 2 describes the

background which will facilitate the understanding of our work. Chapter 3 is con-

cerned with the dataset used for this study. Chapter 4 presents the details of YOLO.

Chapter 5 describes each experiment undertaken in details and presents results with

interpretation. Chapter 6 summarizes what have been achieved in this project, ac-

knowledges the limitations and suggests ideas for further research.

1The phrase ‘multiple inference’ will be used in this dissertation to refer to techniques that pass an
input image through a model multiple times and than merge the results during test. E.g., multi-scale and
multi-crop inference.

Chapter 2

Background

This chapter shows the broader context of object detection and then introduces the

problem in a particular application that our research will be addressing. The purpose is

to familiarize readers with the background in this field, such as the evaluation metric,

and also to have a better understanding of the timeliness of our work.

2.1 Evaluation Metric

Object detection is a multitask problem that identifies objects in an image by clas-

sification and localization using bounding boxes. For each object detected from the

input image, the detector outputs its category, the coordinates of the bounding box and

a confidence score.

Mean average precision (mAP) is the most common metric for measuring how well

object detectors locate and classify objects in the image. To understand this measure-

ment, it is necessary to understand Intersection over Union (IoU) first. As illustrated

in Figure 2.1, IoU measures the overlap between two bounding boxes and high IoU

means two bounding boxes are highly overlapped with each other.

Average precision (AP) is first calculated in each category as follows. For each

ground truth box, a predicted bounding box is considered as true positive (TP) only if

it is the closest to the ground truth box in terms of IoU and the IoU between them is

IoU = area	of	overlap
area	of	union

overlap

union

Figure 2.1: The definition of Intersection over Union.

4

Chapter 2. Background 5

rank score ↓ correct? recall precision

1 0.99 True 0.2 1.00

2 0.91 True 0.4 1.00

3 0.87 False 0.4 0.67

4 0.85 True 0.6 0.75

5 0.80 True 0.8 0.80

6 0.64 False 0.8 0.67

7 0.51 False 0.8 0.57

8 0.32 False 0.8 0.50

9 0.11 False 0.8 0.44

10 0.09 True 1.0 0.50

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

is
io

n

original
smooth

(b)

Table 2.1: An example of how to calculate AP. (a) Predictions are ranked by confidence

score. Precision is the proportion of TPs in predictions from the first row to current row.

Likewise, recall is the proportion of TPs in all positives. This example assumes there

are 5 positives. (b) The AP is the area under the smooth PR curve which is transformed

from the original one.

also higher than a specified threshold (e.g., 0.5). The remaining predicted boxes are

false positives (FP). Then, the predictions in all images are ranked in descending order

according to the confidence score. Since each prediction has been classified as TP or

FP, precision and recall are calculated at each entry in the ranked list by taking all

preceding predictions into account. As shown in the example in Table 2.1a, the recall

rises when going down the ranked list while precision shows a zigzag pattern: it goes

down with FP but goes up again with TP. The blue line in Figure 2.1b shows the curve

if we plot the precision against recall. Average Precision (AP) is the area under the

precision-recall curve after smoothing out the zigzag pattern by replacing the precision

at each recall with the maximum precision on the right. Since both precision and recall

are between 0 and 1, AP also falls in the same range.

mAP is then calculated by averaging the AP in all categories. The mAP for the

road object detection task in WAD 2018 Challenges hosted by Berkeley DeepDrive is

calculated in this way at an IoU of 0.75.

Recently, researchers tend to report the COCO mAP which uses a 101-point inter-

polated AP. This AP calculates the average of precisions on the smoothed precision-

recall curve at 101 recalls ranging from 0 to 1 with a step size of 0.01. It should be

Chapter 2. Background 6

noted that this AP is slightly different from calculating the area under the curve di-

rectly. The COCO mAP (denoted by mAP@[.5:.95]) is then calculated by averaging

this AP over all categories and 10 IoU thresholds from 0.50 to 0.95 with a step size of

0.05. This mAP is often simply referred to as COCO AP in literature.

We adopt COCO mAP because it is more widely used and COCO API also offers

a flexible way to analyze the relationship between the mAP and different object sizes

or classes. In addition to mAP@[.5:.95], COCO API also reports mAP@0.5 (i.e.,

mAP at IoU 0.5), mAP@0.75 and mAP[.5:.95] for small, medium and large objects

respectively. For simplicity, the term mAP alone will refer to COCO mAP@[.5:.95]

and mAP always appears as a percentage without % throughout this document.

2.2 Object Detection Methods

Previously, sliding-window approach was the leading detection paradigm in which

a classifier was applied on an image grid [12]. In recent years, more efficient detec-

tion methods based on deep learning have dominated this visual task. Modern object

detectors can be divided into the following two categories.

Two-stage Detectors: As popularized by R-CNN (Region-based Convolutional

Network) [13], this approach applies a classifier to a sparse set of region proposals that

contain candidate objects. In R-CNN, the first stage extracts region proposals from

the original image using a selective search method and the second stage forwards each

region through a CNN followed by a classifier and a bounding box regressor. In the past

few years, R-CNN has been improved in terms of speed. Fast R-CNN [14] forwards

the whole image through a CNN once and then selects regions of interest (RoIs) from

the feature map of the last convolutional layer instead of the original image. Faster R-

CNN [3] replaces the time-consuming selective search method in Fast R-CNN with a

region proposal network that shares the same CNN backbone as the detection network

and reduces the inference time significantly from 2s to 0.2s. Mask R-CNN [15] is built

on Faster R-CNN and can deal with instance segmentation by additionally predicting

a mask for each bounding box.

One-stage Detectors: One-stage approach predicts objects by forwarding the in-

put image through a CNN once without region proposals. SSD [5] and YOLO [8] are

two of the most widely used one-stage detectors. Both use pre-defined anchors and

detect objects at multiple feature maps that cater objects of different sizes. YOLOv3

[8] has made a huge improvement over YOLOv2 [16] by using a deeper backbone and

Chapter 2. Background 7

incorporating Feature Pyramid Network (FPN) [10] and its accuracy has surpassed its

main competitor, SSD. Although they can run at real time, their accuracy is still not

comparable with that of two-stage methods. RetinaNet [6] combines the ideas of previ-

ous dense detectors, such as anchor and FPN with a novel focal loss and improves the

accuracy further, surpassing most existing two-stage detectors. RetinaNet is composed

of a backbone such as ResNet-101 [17] with FPN and two task-specific subnetworks:

one for classification and the other for bounding box regression. However, the novelty

of RetinaNet is that it uses a new focal loss to address the background-foreground class

imbalance in one-stage detectors due to the fact that most pixels are in background (i.e.,

negative) and make learning for positives inefficient.

One of the key challenges for object detection is scale variation because the size

of objects in the image usually varies in a wide range (e.g., a car is very big near

the camera but very small in the distance) but CNN has difficulty handling objects of

different sizes especially those very small or large objects.

An intuitive solution is to resize the input image to have different scales, forming

an image pyramid. SNIP [18] adopts this approach and selectively trains on objects

of a fixed range of size at each image scale. This detector is too slow because its

scale-aware nature requires to process an image at different scales to detect objects of

different sizes. SNIPER [19] improves the speed of SNIP by only processing context

regions around ground truths generated by a region proposal network in stead of the

full image. Based on Faster R-CNN with a ResNet-101 backbone, this multi-scale

training schema obtains an mAP of 47.6 on the COCO object detection task, namely

the test-dev set. AutoFocus [20] improves the inference speed of SNIPER by only

processing regions (called FocusChips) that are likely to contain objects at finer scales

instead of using RPN on an entire image pyramid.

A more efficient alternative is feature pyramid. FPN [10] augments a standard

CNN with a top-down pathway and lateral connections such that finer-grained and

local information from low level feature maps is combined with coarser and global

information from high level feature maps. This technique is shown to improve multi-

scale object detection and is now widely used in the literature. Both RetinaNet and

YOLO adopt this approach while SSD approximates this idea by detecting objects

from multi-scale feature maps without the top-down pathway.

TridentNet [21] adopts a novel network structure to handle the scale variation prob-

lem. TridentNet uses dilated convolutional layers popularized by [22] with shared

parameters but different dilation rates in multiple parallel branches. This method com-

晏旭瑞�

Chapter 2. Background 8

bined with ResNet-101 as backbone achieves an mAP of 42.7 on COCO test-dev.

2.3 Object Detection for Self-driving Cars

A self-driving car, also known as autonomous vehicle, is able to drive by itself

without human manipulation. This emerging and exciting application has attracted

a lot of interest from both industry and academic world. For instance, Google has

invested a lot in developing self-driving cars in the past few years.

A self-driving car is equipped with sensors and self-driving systems to detect and

navigate in the environment. Currently, the industry tends to build vision based self-

driving systems which employ cameras as sensing devices because cameras are rela-

tively cheap and can provide rich information about the surroundings [23]. Therefore,

object detection algorithms are essential for a vision based self-driving system to de-

tect objects of interest, such as vehicles, people and traffic lights, from images taken

by the camera.

Lin et al. pointed out that the self-driving system needs to be able to process the

traffic information in real time and react to the environment faster than human drivers

to avoid accidents, which suggests the processing time needs to be less than 100ms.

However, this speed constraint presents a challenge for most object detectors. One

reason is that current state-of-the-art object detection algorithms are usually based on

deep convolutional networks which are computationally intensive. The other reason is

that high-res cameras are used to keep as many details in the environment as possible.

It is therefore important to find a balance between accuracy and speed for this real-time

application.

2.4 Accuracy/speed Trade-off

Several successful object detectors have been proposed in recent years. A matter of

concern to practitioners is which object detector and what configurations can achieve

the best balance of accuracy and speed for a specific application. Methods that won

the object detection challenges are usually optimized for accuracy but speed is also

critical for applications in the real world [2]. Few methods, like YOLO, emphasize the

need for speed at the cost of accuracy but they failed to demonstrate a full picture of

the accuracy/speed trade-off except the effect of the input size.

Chapter 2. Background 9

A recent study by Google Research [2] investigated the speed/accuracy trade-off in

an exhaustive and fair way for three object detection architectures: Faster R-CNN, R-

FCN [24] and SSD. They implemented these algorithms using TensorFlow in a unified

manner and compared the effect of different feature extractors, image size and num-

ber of proposals on speed and accuracy. They found that R-FCN and SSD are faster

while Faster R-CNN is slower (>100ms) but more accurate. However, they did not

cover YOLO which has outperformed SSD and R-FCN significantly in both accuracy

and speed [8] and is the focus of this project. Besides, the factors that can affect the

speed/accuracy trade-off covered in this project are different except resolution.

Chapter 3

Dataset

This chapter introduces the dataset we use in this project and presents some findings

after doing data analysis that may have important implications for further experiment.

3.1 Berkeley DeepDrive Dataset

Large-scale image datasets such as ImageNet [25] and COCO [26] have promoted

the recent advances in object detection methods. Currently, researchers tend to report

the performance on COCO dataset to establish a unified comparison. However, these

datasets contain common object categories that are not suitable for self-driving system.

In this project, a dedicated dataset, ideally made from videos captured by high-res

dash-cam, for self-driving applications is needed.

Berkeley DeepDrive (BDD) [11] is chosen for this project because it is a diverse

and large scale dataset for computer vision tasks in the context of self-driving. This

dataset contains 100k1 images of which each is extracted from a 40-second long 720P

high-res video at the 10th second and annotated with bounding boxes for objects in 10

categories: Bus, Traffic Light, Traffic Sign, Person, Bike, Truck, Motor, Car, Train,

Rider. The resolution of all images is 1280 × 720. These images are split into 3 parts

for training (70k images), validation (10k) and testing (20k) respectively. Since the test

set is used for the Road Object Detection task in the 2018 Workshop on Autonomous

Driving (WAD) challenge, its annotation is not publicly available and researchers need

to submit the detection results on a specific website to obtain the evaluation score. This

dataset covers 6 weather conditions (Clear, Partly Cloudy, Overcast, Rainy, Snowy,

Foggy), 6 scene types (Residential, Highway, City Street, Parking Lot, Gas Stations,

1k means thousand.

10

Chapter 3. Dataset 11

Tunnel) and 3 different times of day (Dawn/Dusk, Daytime, Night).

Compared with BDD, other similar datasets such as Cityscapes [27] and KITTI

[28] only provide limited diversity or scale. For instance, Cityscapes only has 5000

images.

3.2 Data Analysis

category train motor rider bike bus truck person light sign car

train 136 3002 4517 7210 11672 29971 91349 186117 239686 713211

val 15 452 649 1007 1597 4245 13262 26885 34908 102506

Table 3.1: The number of objects for different categories in training and validation set.

Data analysis is a preliminary step of almost all machine learning task. This section

will present some quantitative analysis of the BDD dataset and introduce the training

and validation set used for further experiment.

As shown in Table 3.1, the number of objects in different categories varies a lot.

There are nearly one million cars but only more than one hundred trains in the dataset.

This extreme class imbalance is likely to impede the object detector from recognizing

objects of rare category such as train.

Figure 3.1 shows the distribution of object size in the entire training set and its

breakdown for each category. According to COCO API, objects are divided into small

objects (h∗w< 322), large objects (h∗w> 962) and medium objects in between. There

are a large number of small objects and, therefore, the performance of detecting small

objects is crucial to achieve high accuracy.

This dataset also provides image level tagging, including scene, weather condition

and time of day. Table 3.2 shows the number of images in each tag. This kind of

diversity especially the various times of day may have a negative effect on the detection

accuracy.

It is worth noting that 137 images in the training set lack annotations probably be-

cause the annotation work has not been completed 2yet. YOLO treats images without

labels as negative samples but some of these images do contain objects. Therefore, it

is necessary to exclude them from training set.

2Another evidence for this is that the dataset lacks annotations for instance segmentation though it
was claimed to have provided.

Chapter 3. Dataset 12

0 25 50 75 100 125 150 175 20032
sqrt(h*w)

0.00

0.01

0.02

0.03

0.04

0.05

de
ns

ity

bike
bus
car
motor
person
rider
traffic light
traffic sign
train
truck
all

Figure 3.1: Distribution of object size in the training set for individual and all categories.

The area under each density curve equals one. The majority of objects are very small.

Due to the limited time and GPU resource, all models except the final model which

will be used to submit results for the WAD challenge are trained on a mini training

set that contains 5k images randomly selected from the complete training set (∼70k

images). Since the annotation for test set is not publicly available and each account has

limited submissions to the evaluation sever, half (i.e., 5k) of the validation set is held

out as a local test set to report mAP in this project and the other half validation set is

used to select the best weights during training.

Since the dataset contains many images that suffer from blurring or low contrast

(e.g., at night), this project will exploit deblurring and contrast enhancement that might

benefit object detection by mitigating these problems respectively.

To summarize, BDD is a very challenging object detection dataset for the follow-

ing reasons. The most important reason is that the class imbalance as well as scarce

training data for some categories (e.g., train and motor) results in extremely low mAP

for these categories. Besides, there are a large number of small objects that are hard

to recognize even for human. Furthermore, high-res image slows down the speed and

makes it hard to detect small objects if the image is resized to a smaller resolution.

What is more, the density of objects is higher because there are considerably more

object instances per image than COCO (18.4 vs 7.3). Last but not least, the variation

in scene, weather condition and time increases the complexity further.

Chapter 3. Dataset 13

weather train val

foggy 130 13

partly cloudy 4881 738

rainy 5070 738

snowy 5549 769

undefined 8119 1157

overcast 8770 1239

clear 37344 5346

(a)

scene train val

gas stations 27 7

tunnel 129 27

parking lot 377 49

undefined 361 53

residential 8074 1253

highway 17379 2499

city street 43516 6112

(b)

time of day train val

undefined 137 35

dawn/dusk 5027 778

night 27971 3929

daytime 36728 5258

(c)

Table 3.2: The number of images for different kinds of weather, scene and time of day

in the training and validation set.

3.3 Class Imbalance

Class imbalance occurs when each class does not make up an equal proportion

of the dataset. Extreme class imbalance is a crucial problem for classification tasks

because it can lead to meaningless metrics or classifiers biased towards the majority

class.

The “long-tail” effect in our dataset is a big impediment to the overall performance

because mAP is calculated by averaging the mAP of each class, making class with

extremely low mAP become a bottleneck. Data scarcity is also to blame for the poor

performance on minority class like train because only few trains appear in the training

set. The best but not the easiest way to resolve this issue is to add more data for these

classes or use additional dataset. If this is not feasible, other approaches include cost-

sensitive learning [29], transfer learning [30] and sampling [31]. Sampling is a simple

strategy to address class imbalance either by replicating instances of the minority class

or reducing instances of the majority class in order to create a more balanced dataset.

We will adopt this approach to mitigate class imbalance in our final model.

Chapter 4

Algorithm

This chapter presents a detailed introduction of YOLO.

We select YOLO as our object detection system because it has a number of attrac-

tive features. One major advantage of YOLO is that it can achieve very good accuracy

especially on mAP@0.5 while running very fast. Some two-stage detectors which can

achieve higher accuracy, such as SNIPER [19], are subject to the speed constraint in

self-driving system. Some one-stage detectors which can run at comparable speed,

such as SSD [5], are not as accurate as YOLO. Another advantage is that YOLO is

very popular and has been well studied and widely used, making it easier to learn and

use than other detectors.

4.1 Networks

As illustrated in Figure 4.1, the architecture of YOLO is composed of feature ex-

tractor, detection network and yolo layer. This section will describe the first two com-

ponents which form the bottom-up and top-down path in the feature pyramid network

respectively.

4.1.1 Feature Extractor

YOLO is very fast and accurate partly because it uses an efficient backbone net-

work called Darknet-53 since it has 53 convolutional layers. Darknet-53 can achieve

equally good results as the state-of-the-art classifier ResNet-152 which has 152 lay-

ers on the 1000-class ImageNet classification task and, more importantly, is 2× faster.

As shown in Figure 4.1, Darknet-53 uses strided convolutional layer followed by al-

14

Chapter 4. Algorithm 15

type filter size
Softmax 1000

Conv1x1 1000

Avgpool 1

4x

Residual

Conv3x3 1024

Conv1x1 512

Conv3x3/2 1024 8

8x

Residual

Conv3x3 512

Conv1x1 256

Conv3x3/2 512 16

8x

Residual

Conv3x3 256

Conv1x1 128

Conv3x3/2 256 32

2x

Residual

Conv3x3 128

Conv1x1 64

Conv3x3/2 128 64

1x

Residual

Conv3x3 64

Conv1x1 32

Conv3x3/2 64 128

Conv3x3 32

Input 3 256

type filter size

3x
Conv1x1 512

Conv3x3 1024

Conv1x1 45

Input 512 8

Conv1x1 256

Upsamplex2 16

Stack 756

3x
Conv1x1 256

Conv3x3 512

Conv1x1 45

Input 256 16

Conv1x1 128

Upsamplex2 32

Stack 384

3x
Conv1x1 128

Conv3x3 256

Conv1x1 45

layer 74

layer 61

layer 36

layer 79

layer 91

layer 82 (P5)

layer 106 (P3)

Feature Extractor

Detection Network
Yolo Layer

Bottom-up

Top-down

layer 94 (P4)

Figure 4.1: The architecture of YOLO consists of 3 main components: feature extractor,

detection network and yolo layer. Conv3×3/2 denotes convolutional layer with kernel

size 3×3 and stride 2. This figure assumes that the input image has width 256 and the

total number of class is 10.

ternating 1×1 and 3×3 convolutional layers with residual connection. YOLO uses

Darknet-53 without the last 3 layers as feature extractor because these 3 layers are

only used for image classification.

As with pooling layers, convolutional layer with larger stride can be used to reduce

the output dimension and increase context as well. Recent work [32] shows replacing

max pooling layer with a stride-2 conv layer can get better results. This is why down-

sampling is achieved by 3×3 stride-2 convolution instead of max or average pooling.

Residual block proposed by He et al. can solve the degradation problem when

using extremely deep networks and ResNet-101 based on this building block has won

several classification and detection challenges such as COCO detection. As illustrated

in Figure 4.2, the output of the residual block is the sum of the output from the last

convolutional layer and the input of the block. The skip connection (also called residual

connection) acts as an identity function while the stacked layers in the block learn a

residual function.

Chapter 4. Algorithm 16

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 33, 48] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[35] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [35], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [40]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 47]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [44, 45], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 44, 45] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 33, 48] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [33, 48]. In [43, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [38, 37, 31, 46] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [43], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [41, 42]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2771

Figure 4.2: Residual block. Figure

from [17].

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

12117

Figure 4.3: Feature Pyramid Network. Figure from

[10].

4.1.2 Detection Network

In order to detect objects of different scales, detection network selects 3 feature

maps at different levels from the feature extractor network. The last feature map (layer

74) of the feature extractor is followed by a group of successive 1×1 and 3×3 convo-

lutional layers before performing detection on the yolo layer. Then, the feature map

3 layers before (layer 79) is upsampled by 2× and merged with a larger feature map

(layer 61) from the feature extractor using concatenation. This method keeps semanti-

cally strong features from high level feature map and finer-grained features from low

level feature map. This merged feature map is also followed by a similar group of con-

volutional layers to generate prediction. The same design is performed again to utilize

finer-grained features from a previous feature map (layer 36) which keeps sufficient

details for detecting small objects.

In general, deep and high level pyramid layer has low resolution after downsam-

pling and is responsible to detect large objects while shallow and low level pyramid

layer is the opposite.

4.2 Yolo Layer

Yolo layer is a special layer that is responsible for generating bounding boxes and,

if during training, computing loss based on the feature map produced by the detection

network. This section will begin with anchor which plays an important role in yolo

layers.

4.2.1 Anchor

The concept “anchor” was introduced by RPN [3] and now widely adopted by

one-stage object detectors to handle dense objects. An anchor box, a.k.a bounding

Chapter 4. Algorithm 17

box prior or default box, has a pre-defined size with respect to the network input size.

Anchor boxes can be hand-crafted or computed from the ground truth boxes in the

dataset using a clustering method such as K-Means.

YOLO generates a low-res feature map from the input image after running the

feature extractor and detection network. Each cell in the feature map grid corresponds

to a square area in the original image. A ground truth object is assigned to a cell where

the center of its bounding box is located in. It is quite often the case that more than

one objects are assigned to the same cell. YOLO proposes #anchors boxes at each

cell and each predicted box is associated with an anchor box. With the help of anchors,

multiple objects can be detected at each grid cell. An example is shown in Figure A.1.

Intuitively, it is hard to predict a big bounding box using a small anchor or vice

versa. Therefore, the quality of the anchor boxes has a great impact on the detection

accuracy. By default, YOLO uses 3 yolo layers and each layer has 3 anchors. These 9

anchors are chosen by running K-Means on COCO training set.

4.2.2 Prediction

Box

Coordinates

!"# "$ "% "& '(') … '*

Objectness Class

Probabilities

Figure 4.4: The input image is processed to generate a low-res feature map where each

cell has 3 bounding box predictions each corresponding to an anchor and comprising 4

box coordinates, 1 objectness score and class probabilities.

The input of yolo layer is a 3D tensor which can be viewed as a grid encoding the

Chapter 4. Algorithm 18

predicted bounding boxes along the depth dimension. At each grid cell, YOLO predicts

4 bounding box coordinates (tx, ty, tw, th), 1 objectness score and 1 classification score

associated with each class for every anchor assigned to the current yolo layer. A typical

grid cell is shown in Figure 4.4. Therefore, the shape of the tensor is height×width×
[#anchors× (4+1+#class)] and the total number of predicted bounding boxes in one

yolo layer is height×width×#anchors.

YOLO predicts the center coordinates as offsets in the grid cell and width (or

height) relative to the anchor width (or height). As illustrated in Figure 4.5, if the

cell has offset (cx,cy) from the top left corner of the grid and the anchor has shape

(pw, ph), the predicted box is:

bx = σ(tx)+ cx

by = σ(ty)+ cy

bw = pwetw

bh = pheth
(4.1)

YOLO predicts the class of the object in the bounding box using multi-label clas-

sification (i.e., independent binary classification for each possible class) instead of

multi-class classification because sometimes an object can have more than one labels

(e.g., man and person). For each predicted bounding box, YOLO also predicts an

objectness score which indicates whether the bounding box contains an object using

logistic regression.

Location accuracy is a drawback of YOLO that prevents it from achieving high

mAP at a strict IoU (e.g., 0.75) although it can obtain comparably good mAP@0.5.

One possible reason for this result is the use of exponential function which is very

sensitive to positive input to transform tw and th to positives. An improvement we

made is to replace exponential function with softplus ln(1+ex) which is more smooth.

Figure 4.6 compares these two functions.

At test time, NMS (Non-Max Suppression) is applied to bounding box predic-

tions from all yolo layers to generate the final detections. The algorithm of this post-

processing step is shown in Algorithm 1. What NMS does is filtering out bounding

boxes with low confidence which are probably corresponding to the background in the

image and, more importantly, eliminating overlapping boxes. Each yolo layer outputs

a bounding box prediction for each anchor at each grid cell. As a result, YOLO are

likely to produce multiple detections for the same object and it is necessary to select

the one with the highest confidence and discard others that are very close to it in terms

of IoU but have lower confidence. This is why it is called non-maximum suppression.

Chapter 4. Algorithm 19

σ(tx)

σ(ty)

pw

ph bh

bw

bw=pwe
bh=phe

cx

cy

bx=σ(tx)+cx
by=σ(ty)+cy

tw

th

Figure 3: Bounding boxes with dimension priors and location
prediction. We predict the width and height of the box as offsets
from cluster centroids. We predict the center coordinates of the
box relative to the location of filter application using a sigmoid
function.

turns the 26⇥ 26⇥ 512 feature map into a 13⇥ 13⇥ 2048
feature map, which can be concatenated with the original
features. Our detector runs on top of this expanded feature
map so that it has access to fine grained features. This gives
a modest 1% performance increase.

Multi-Scale Training. The original YOLO uses an input
resolution of 448 ⇥ 448. With the addition of anchor boxes
we changed the resolution to 416⇥416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOv2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320, 352, ..., 608}. Thus the
smallest option is 320 ⇥ 320 and the largest is 608 ⇥ 608.
We resize the network to that dimension and continue train-
ing.

This regime forces the network to learn to predict well
across a variety of input dimensions. This means the same
network can predict detections at different resolutions. The
network runs faster at smaller sizes so YOLOv2 offers an
easy tradeoff between speed and accuracy.

At low resolutions YOLOv2 operates as a cheap, fairly
accurate detector. At 288⇥ 288 it runs at more than 90 FPS
with mAP almost as good as Fast R-CNN. This makes it
ideal for smaller GPUs, high framerate video, or multiple
video streams.

At high resolution YOLOv2 is a state-of-the-art detector
with 78.6 mAP on VOC 2007 while still operating above
real-time speeds. See Table 3 for a comparison of YOLOv2

M
e
a
n

A
v
e
r
a
g
e

P
r
e
c
i
s
i
o
n

Frames Per Second

R-CNN

YOLO

Fast R-CNN

Faster R-CNN

Faster R-CNN

Resnet
SSD512

SSD300

YOLOv2

80

70

60

0 50 10030

Figure 4: Accuracy and speed on VOC 2007.

with other frameworks on VOC 2007. Figure 4
Further Experiments. We train YOLOv2 for detection

on VOC 2012. Table 4 shows the comparative performance
of YOLOv2 versus other state-of-the-art detection systems.
YOLOv2 achieves 73.4 mAP while running far faster than
competing methods. We also train on COCO and compare
to other methods in Table 5. On the VOC metric (IOU =
.5) YOLOv2 gets 44.0 mAP, comparable to SSD and Faster
R-CNN.

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 2007+2012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 76.4 5
YOLO [14] 2007+2012 63.4 45
SSD300 [11] 2007+2012 74.3 46
SSD500 [11] 2007+2012 76.8 19
YOLOv2 288 ⇥ 288 2007+2012 69.0 91
YOLOv2 352 ⇥ 352 2007+2012 73.7 81
YOLOv2 416 ⇥ 416 2007+2012 76.8 67
YOLOv2 480 ⇥ 480 2007+2012 77.8 59
YOLOv2 544 ⇥ 544 2007+2012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOv2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOv2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

3. Faster
We want detection to be accurate but we also want it to be

fast. Most applications for detection, like robotics or self-
driving cars, rely on low latency predictions. In order to

4

Figure 4.5: The bounding box is com-

puted based on an anchor in a grid cell

of the feature map. Specifically, the net-

work predicts the center of the box (bx,by)

as offsets from the location of the grid

cell (cx,cy) and the dimension (bw,bh)

as some proportion of the anchor size

(pw, ph). Figure from [8].

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

5

6

7

y

exp
softplus

Figure 4.6: Exponential function versus

Softplus. Exponential function is very

steep while softplus is more smooth.

4.2.3 Loss Function

Each bounding box prediction consists of 4 coordinates (tx, ty, tw, th), 1 objectness

score o and, for each class c, a classification probability pc. All values except tw and

th are squashed between 0 and 1 using sigmoid function. The loss function for the

4 coordinates is mean squared error while the loss for both objectness and classes is

binary Cross Entropy.

Targets are defined as follows. Each ground truth object is assigned to one cell in

the grid according to the location of its bounding box center. Furthermore, an object is

assigned to only one anchor which has the highest overlap with the ground truth box,

making each anchor specialize in predicting objects of certain size and aspect ratio. It

means only one anchor in a specific cell on one of the 3 yolo layers is responsible for

predicting this object. The target values for the prediction corresponding to this anchor

are therefore clear. The objectness score ô is 1 and the classification probability p̂c is

1 for the class of the object and 0 for others. The ground truth coordinates (t̂x, t̂y, t̂w, t̂h)

can be computed by inverting equation 4.1.

If no ground truth object is assigned to a grid cell or an anchor, it only penalizes

the objectness error of the corresponding prediction. An exception is that when this

bounding box overlaps some ground truth box over a threshold (0.75 by default), the

Chapter 4. Algorithm 20

loss of this prediction is ignored.

The loss function for a single prediction is shown in equation 4.2 where λob j and

λiou are weights assigned to the loss of objectness and IoU respectively.

L =−λob j[ô logo+(1− ô) log(1−o)]

− ô
{

∑
c∈class

[p̂c log pc +(1− p̂c) log(1− pc)]

− 1
2

λiou
[
(tx− t̂x)2 +(ty− t̂y)2 +(tw− t̂w)2 +(th− t̂h)2]} (4.2)

4.3 Data Augmentation

It is a common practice to augment the training data, such as cropping and horizon-

tally flipping images, in order to increase the diversity of the dataset without collecting

new data. Since a large training set is crucial to the performance of modern deep learn-

ing models, this strategy is very useful to increase the size of dataset when the data

available is scarce. It is also useful to avoid overfitting due to irrelevant features and

make the model robust to variations during testing even if a large dataset is available.

During training, YOLO applies horizontal flipping, random translation of up to

30% of the original image size and randomly adjusts hue, saturation and exposure in

the HSV color space on the fly before feeding an image to the model. Examples of

data augmentation are given in Figure A.2.

Besides image augmentation methods mentioned above, YOLO also uses multi-

scale training method which benefits multi-scale object detection significantly. Instead

of fixing the input size, it resizes the input image to a new size by a random factor

between 0.667 and 1.5 every 10 batches. Since the model downsamples the image by

a factor of 32, the new resolution is constrained to always be a multiple of 32. Multi-

scale training can be seen as a kind of scaling augmentation strategy because it makes

the same object appear in a different size when the corresponding image is used again

during training. As a result, this method enables the model to work well for a variety

of object sizes and also at different image resolutions.

Chapter 5

Experiments and Results

This chapter covers the experiments carried out. For each experiment, we will de-

scribe our motivation and experiment setup and then present the results followed by

explanation and comparison to previous related work. Enough details such as impor-

tant hyperparameter settings are given so that another researcher can reproduce these

experiment results.

Experiments are done on an AWS p3.2xlarge instance which has a Tesla V100

GPU with 16 GB memory. Following the practice of recent object detectors [33], both

YOLO and RetinaNet use backbones pretrained on the standard ImageNet-1k dataset

which contains 1000 classes. During training, each model is evaluated on the first half

of the validation set every 1000 batches and the model weights that perform the best1

are chosen as the final weights to report mAP on the second half of the validation set.

All mAPs are calculated by the COCO API with default parameters. The inference

time is measured by averaging the time of processing 200 images on the Tesla V100

GPU and only includes the time of passing the image through the model2 . The time

of preprocessing such as loading and resizing images or post-processing such as NMS

are excluded because it depends largely on the implementation and can be ignored if

the code is well optimized.

5.1 Baseline

The first experiment aims to establish a baseline for comparison with the following

experiments. The baseline model is obtained by training YOLO on the BDD mini
1This training schema has similar effect to early stopping which helps to avoid overfitting.
2It is worth mentioning that all timing information is measured when no other process is using the

GPU because we notice it may take double time to process one image if the GPU has high load.

21

Chapter 5. Experiments and Results 22

Experiment Model mAP mAP50 mAP75 mAPS mAPM mAPL time (ms) 1

Baseline baseline 16.9 37.9 13.2 5.3 21.3 34.8 11.4±0.2

Scales
2 scales 12.9 29.7 10.0 2.1 16.9 33.1 9.7±1.3

5 scales 18.5 39.6 14.9 8.3 21.6 32.6 14.5±0.2

Anchors
2 anchors 16.7 38.1 12.5 5.3 21.3 33.0 11.4±0.6

5 anchors 17.1 38.0 13.2 5.7 21.3 34.6 11.8±0.2

Resolution 2

baseline 512 14.3 32.3 11.1 3.6 18.5 34.3 8.6±0.2

baseline 768 18.0 40.1 13.9 6.4 22.6 32.5 14.5±0.2

baseline 896 18.5 41.2 14.4 7.6 23.1 31.3 17.0±1.5

baseline 1024 18.5 41.8 14.0 8.7 23.0 28.7 20.4±1.3

baseline 1280 16.9 39.0 12.5 8.7 21.4 22.7 29.9±1.5

896 19.7 42.6 15.8 8.4 24.4 36.3 17.3±0.4

1024 20.4 44.2 16.5 8.2 25.0 36.3 20.8±1.3

1280 19.5 41.2 16.0 9.2 24.2 33.2 30.7±2.1

Enhancement 3

baseline blur 14.9 33.5 11.3 5.6 21.0 38.2 ––––

baseline sharp 17.0 37.4 13.5 7.0 23.8 44.3 ––––

baseline night 15.9 38.7 10.9 6.8 21.8 29.0 ––––

baseline ce 15.3 37.8 9.9 6.3 20.7 27.6 ––––

RetinaNet RetinaNet 18.7 37.5 16.2 5.0 23.7 38.6 54.0±1.9

Final final 28.0 55.4 25.0 13.6 32.1 47.3 23.2±0.4

1 Inference time is present as mean± confidence interval at 95% confidence level. Confi-

dence interval takes both standard error and sample size into account.
2 baseline {512,768,896,1024,1280} means the baseline model with input size 512×288,

768×448, 896×512, 1024×576, 1280×736 respectively.
3 These models use different test sets from others.

Table 5.1: Experiment results. Although mAP@.5 and mAP@.75 are provided for com-

pleteness, the mAP throughout refers to mAP@[.5:0.95] specifically because it is the

main metric used by COCO. In addition, this table also shows the breakdown of mAP

in small, medium and large objects.

training set introduced in 3.2.

There are a number of implementations for YOLO in addition to the official Dark-

net provided by the author of YOLO. However, most of them struggle reproducing the

same results after training using the same data and configuration. Instead of using the

Chapter 5. Experiments and Results 23

official implementation of YOLO, we adopt AlexeyAB’s Darknet3 which is forked

from the official repository because this fork has been optimized in several ways and

offers more features than the official code while achieving equal or better performance.

For example, one facility provided by this fork is that during training mAP can be cal-

culated on the validation set periodically and the interim model with the highest mAP

so far will be saved.

Important hyperparameter settings and justification are given below. All YOLO

models in the following experiments use these settings unless otherwise stated.

We set width=640 and height=384 respectively. YOLO and many other object

detection systems will resize the input image before feeding into the network to a

specific size which is configurable. We did not use the raw resolution (1280×720)

for time and memory reason. Moreover, YOLO requires the input dimension to be

divisible by 32 because the input to the network will be downsampled with stride 32.

This is why the height is 384 instead of 360. YOLO will also keep the original aspect

ratio by padding which means there are 12 pixels of padding near the top and bottom.

We use a batch size of 32 instead of the default 64 which is tuned for COCO dataset

because there are much more objects per image in the BDD dataset.

We set max_batches=16000 for training around 100 epochs on 5000 images to

ensure that the performance will eventually saturate.

We set steps=12800,14400 so the current learning rate will decay by 0.1 after

80% and 90% of the entire training process respectively. This learning rate schedule

is a common optimization procedure that can reduce training time and increase perfor-

mance by learning quickly earlier and fine tuning later.

We set filters=45 for the layer prior to each yolo layer because the number of

output filters is supposed to be [(#classes + 5) * #anchors] where 5 means 4

bounding box coordinates plus 1 objectness prediction.

We follow the convention of YOLO and generate 9 anchors by clustering object

dimensions in the training set using K-Means with a customized distance function that

calculates the IoU instead of Euclidean distance. The visualization of clustering results

and anchors are illustrated in Figure 5.1. The anchor dimensions in the configuration

file need to be normalized with respect to the image resolution after resizing.

We set random=1 to enable multi-scale training which augments training data by

rescaling the input size by a random factor between 2
3 and 3

2 every 10 batches.

From the training curve in Figure 5.2, we can see that the mAP plateaus after about

3https://github.com/AlexeyAB/darknet

Chapter 5. Experiments and Results 24

0 200 400 600 800 1000 1200
width

0

100

200

300

400

500

600

700

he
ig

ht

Figure 5.1: Clustering of the ground truth bounding boxes in BDD training set using

K-Means. Red centroids represent anchors.

0 2000 4000 6000 8000 10000 12000 14000 16000
batch

6

7

8

9

10

11

12

lo
ss

4

6

8

10

12

14

16

m
A

P

Figure 5.2: Loss and validation mAP of Baseline model during training.

104 batches but increases (equivalently, the loss decreases) again after the first learning

rate schedule point at 12800 batches.

Chapter 5. Experiments and Results 25

train motor bike rider traffic lightpersontraffic sign bus truck car
category

0

5

10

15

20

25

30

35
m

A
P

0.0

7.8
9.2 9.7

13.2
15.6

23.1

26.7 27.1

36.7

snowy clear rainy overcast partly cloudy foggy undefined
weather

15.9 16.5 16.8 17.5 17.8
20.1 20.8

highway city street undefined residential parking lot tunnel gas stations
scene

0

5

10

15

20

25

30

35

m
A

P

14.8
17.2 18.0 18.9

21.1
23.6 24.1

night dawn/dusk daytime undefined
time of day

15.8 17.0 17.4

21.4

Figure 5.3: The breakdown of mAP in different categories and image tags, namely

weather, scene and time of day for the baseline model.

The results of this experiment as well as all experiments below are shown in Ta-

ble 5.1. We notice that the object size has significant implications for mAP. Compared

with large objects, the mAP for small objects is quite low and this cumbers the overall

mAP since small objects account for a large proportion in the dataset.

As shown in Figure 5.3, the mAP is further divided by object category and scene,

weather condition, time of day in the image to facilitate analysis of the performance.

The mAPs vary a lot across different categories. For example, the best mAP

reaches 36.7 for car while the worst mAP is 0 for train. The huge gap is due to the

data scarcity and class imbalance in the training set. For instance, train only appears

136 times in the complete training set, making its mAP extremely low and become a

bottleneck of the overall performance. We also notice that the mAP for traffic lights is

very low despite the fact that there are a large number of such objects in the dataset.

One important reason is that most traffic lights, as can be seen from Figure 3.1, are

small objects and hence hard to detect.

In contrast, the mAPs for different weather conditions are rather uniform. It is

Chapter 5. Experiments and Results 26

in line with our intuition that snowy days make it relatively hard to perform detection

since objects may be covered by snow and less color information is available. However,

good weather condition does not imply good performance since the mAPs for overcast

and rainy days are slightly better than that of clear days. Higher mAP in the weather

foggy and undefined can be attributed to the small sample size. We find that the hard

class train does not appear in these two weather conditions in the validation set and the

calculation of mAP in COCO API will ignore this class completely. Besides, weather

foggy only has a very small number of images in the validation set and might lead to

inaccurate mAP calculation.

Similar results are also observed for different times of the day with the exception

of undefined which is caused by the absence of hard class train and lack of sufficient

samples in the validation set. Low light condition especially at night does have a

negative impact on the performance of object detection.

The mAPs in different scenes seem to be quite different but this can also be ex-

plained by the small sample size and hard class. For instance, train only appears in

city street and highway and, furthermore, most appear in highway, making the mAP

for highway relatively low.

5.2 Detection Scales

YOLO detects objects at 3 scales using feature pyramid levels from P5 to P3, where

Pl is downsampled by a factor of 2l . During downsampling, the context of too small

objects might be lost.

In this experiment, we extend the architecture to use high resolution feature pyra-

mid levels and detect objects at 5 scales from P5 to P1. Briefly speaking, P5 is the

highest level in the feature pyramid. After being upsampled by a factor of 2, P5 is

concatenated with a previous feature map which has equal size to produce P4. P3 is

produced from P4 in a similar way. We replicate this structure and append another

2 detection layers on P2 and P1. This model is expected to perform better for small

objects but also be slower.

As a comparison, we did another experiment by removing the last level P3 and only

use 2 scales. It does not make sense to remove only P5 or P4 because this has little help

for reducing computation.

These architecture changes also require to modify the configuration for anchors

and we use K-Means to generate 3 anchors at each scale as before.

Chapter 5. Experiments and Results 27

From the experiment results in Table 5.1, it conforms to our expectation that the

5-scale model can improve the mAP significantly especially for small objects though

it is also slower while using only 2 scales leads to disaster for both small and medium

objects. It is, however, unexpected to observe the degradation of performance for large

objects when using 5 scales and this might result from the bad choice of anchors.

When 15 anchors are generated using K-Means and distributed evenly across 5 scales,

we notice that most objects, including many large objects, end up being assigned to the

lower level feature maps during training, making higher level feature maps ineffective

and impeding the performance for large objects.

5.3 Anchor Density

Anchor is one of most important design components in an one-stage detector. It

was shown that RetinaNet performs the best when using 6 anchors of 2 scales and 3

aspect ratios per detection level [6] but it is not known how YOLO performs while

varying the number of anchors. Intuitively, anchors that have a good coverage of the

space of possible object boxes will yield better results. Motivated by this hypothesis,

this experiment will study the effect of anchor density on the performance of YOLO.

The baseline model follows the default configuration in YOLO which uses 9 an-

chors and divides them evenly across 3 scales. In this experiment, we have trained

another 2 models using 2 and 5 anchors at each scale respectively. These anchors are

generated by the same clustering algorithm used in 5.1. As can be seen from Table 5.1,

only slight improvement is seen when increasing the number of anchors from 2 to 5

and one possible reason for this is that using 2 anchors per scale already covers a wide

variety of objects in the dataset. To our surprise, the time incurred by more anchors is

negligible probably because the CNN dominates the computation complexity.

Lin et al. investigates the effect of anchor density for RetinaNet and found that

using 9 anchors per scale can improve the mAP by 4 points compared to just using

a single square anchor but the performance saturates when increasing the number of

anchors further. However, we could not observe significant improvement in our exper-

iment when increasing the number of anchors probably because RetinaNet and YOLO

use anchors that are generated in different ways. RetinaNet uses dataset agnostic an-

chors by tiling a collection of boxes at predefined aspect ratios (e.g., [0.5,1,2]) and

scales (SCALE ∗ 2k/4, 0 < k ≤ 3). In contrast, we use anchors generated by clus-

tering the ground truth boxes in the dataset and 6 anchors in total may already match

Chapter 5. Experiments and Results 28

most objects well. Having said that, we only test 2,3,5 anchors per scale and maybe a

wider range of parameters are needed in order to show the difference.

5.4 Image Resolution

Previous studies have shown that high resolution can significantly improve the de-

tection accuracy especially for small objects. Both YOLO and RetinaNet have reported

the accuracy/speed trade-off on COCO test-dev while varying the image resolution.

This experiment will try to reproduce the results of YOLO on a new dataset and fur-

ther study the effect of resolution. We also plot the accuracy/speed trade-off curve for

this experiment in Figure 5.4.

Firstly, we test the baseline model which was trained at 640×384 using various

resolutions. YOLO is a fully convolutional network which allows to process images of

arbitrary size4 during inference regardless of the size used for training. Furthermore,

this model is trained with multi-scale enabled and hence can work well at a range of

input resolutions.

As shown in Table 5.1 and Figure 5.4, the results conform to previous findings

that higher resolution yields better mAP but also makes detection slower. In addition,

we also observe that the mAP decreases when the input size is larger than 1024×576

because increasing input resolution helps to improve accuracy for small objects, but

in the meantime, lowers accuracy for large objects. It is easy to understand the first

case because high-res images allow more small objects to be resolved. However, it

is not straightforward to explain why high resolution leads to worse results for large

objects. One reason for this observation is that the detector only works well for objects

in a range of sizes that appear in training data and does not work well for too large

objects beyond that range. In general, YOLO performs well for small objects in high

resolution input and large objects in low resolution input.

Then, a few models are trained and tested using different resolutions, including

896×512, 1024×576 and 1280×736. These models inherit configurations from the

baseline model except that width, height and anchor size are changed accordingly.

Compared with the baseline model using a higher resolution for inference, the

model trained at the same high resolution can achieve much better results without any

compromise on speed. This difference can also be explained by the scale variation as

above. The baseline model is trained using image size of 640× 384 and, as a result,

4As long as it is a multiple of 32.

Chapter 5. Experiments and Results 29

10 15 20 25 30
inference time (ms)

14

15

16

17

18

19

20

m
A

P

640

512

768

896 1024

1280

896

1024

1280

inference at various resolutions using baseline model
train and test at various resolutions
baseline

Figure 5.4: Accuracy/speed trade-off while varying resolution

large objects in high-res images are larger than objects that are used for training and

thus are hard to detect (i.e., hard examples). In contrast, models in this experiment are

trained and tested at a higher resolution and can perform well on these large objects.

Surprisingly, we also noticed that the performance saturates and declines when in-

creasing the resolution further. This also accords with earlier observations from Table

1(e) in [6] where the performance of RetinaNet for large objects drops slightly when

the resolution is higher than 600. It is difficult to explain this result but it is very

likely to be related to context modeling. Downsample does not only reduce computa-

tion but also helps to broaden context. Higher downsample ratio means larger context.

For instance, an image which is downsampled by a factor of 8 means every 8 pixels

along the width or height dimension will be reduced to 1 pixel. Multiple convolutional

layers stacked together also help to increase context but are less effective than down-

sample methods. YOLO downsamples the input image by a factor of 32 which means

large objects (i.e., area > 96×96) will occupy at least 3×3 area in the highest feature

map. YOLO detects objects at each location which is supposed to have included all

contextual information, like edge, about the objects assigned to this location. As a

consequence, it is difficult to detect very large objects. One possible solution is to use

deeper feature extractor that downsamples the feature map further.

5.5 Image Enhancement

Image enhancement is the procedure of improving the quality of original images so

that the results are better for displaying or further processing [34]. Common methods

Chapter 5. Experiments and Results 30

of image enhancement include deblurring and the adjustment of color balance, contrast

and sharpness. This section will investigate the effect of two approaches, deblurring

and contrast enhancement, on object detection. These image preprocessing techniques

can enhance the image quality for human eyes and we expect them to improve the

detection accuracy during inference time as well.

5.5.1 Deblurring

Images taken by a shaking camera on the self-driving car are likely to be blurred,

making objects indistinct and fuzzy. Image blurring in our dataset results from not

only camera shake but also object motion because other vehicles are also moving at

different speeds, making it very hard to restore the sharp image.

To evaluate the effect of deblurring, we intended to compare the detection accuracy

of YOLO on blurred images and sharp images restored after removing blurs. However,

the difficulty is there may not exist a deblurring tool that works well for our project.

Deblurring is a very challenging task because image blurring can be caused by various

sources, including object motion, camera shake and scene depth variation. Since con-

ventional deblurring methods such as Wiener filter assume the blur kernel is partially

known, they can only handle a specific type of blurs such as camera motion and does

not perform well for non-uniform blurs [35]. DeblurGAN [36] is a recent machine

learning based deblurring method that is intended to handle these complicated blurs

caused by various sources in an intelligent mechanism. However, there are a few rea-

sons that stop us from adopting this approach. First of all, DeblurGAN is a learned

method that requires to be trained on our own dataset to work well. It is shown that

the best results are obtained after training on a combination of synthetically generated

blurred images and blurred images taken from the real world. The lack of such data

makes it difficult to train a DeblurGAN model and, additionally, the training phase

takes 6 days. What is even worse is that DeblurGAN takes 0.85s to process one image,

making it useless for our task which is constrained within 0.1s.

Due to the above reasons, we decide to give up deblurring and instead compare the

detection accuracy on original sharp images and synthetically blurred images generated

by applying random motion blur on the sharp ones. As no previous study has shown to

what degree deblurring can affect the performance, this can tell us exactly how much

the accuracy can be improved if a deblurring oracle exists and all blurred images can

be 100% restored.

Chapter 5. Experiments and Results 31

Using the baseline model trained in 5.1, we test on 1000 images chosen from the

validation set before and after applying random motion blur whose kernel size ranges

from 3 to 10 and angle ranges from 0 to 360. Figure 5.5a shows an image after blurring.

As shown in Table 5.1, the detection accuracy degrades 2.1 points if motion blurs

appear in the image, which also indicates the upper limit of improvement in accuracy

if deblurring is employed.

This conforms to our expectation that blurred images result in poor performance

and deblurring benefits object detection. Since most images in the whole dataset are

not blurred, the improvement for the overall performance should be very limited and

this enhancement is thus not worthwhile for our task.

It is worth mentioning that Kupyn et al. also tests the performance of YOLO after

applying DeblurGAN to blurred images and a higher recall is obtained after deblur-

ring. However, they use synthetically generated blurred images that stimulate camera

shake instead of real blurred images which tend to be more difficult to recover. Their

experiment also saw a much lower precision, meaning the effectiveness of DeblurGAN

is uncertain if measured under the metric mAP which they did not report.

5.5.2 Contrast Enhancement

A large number of images in BDD are captured at night. Moreover, self-driving

cars are expected to work under low-illumination conditions as well. Images at night

often suffer from low contrast and, as can be seen from Figure 5.3, result in worse

performance. Contrast enhancement (CE) can help to adjusts the contrast in over- or

underexposed images and provide more distinctive features for object detectors.

In order to evaluate the effect of contrast enhancement for object detection, we

measure the performance of the baseline model on a tiny validation set containing

1000 images captured at night before and after contrast enhancement respectively.

Ying et al. propose a new contrast enhancement algorithm that can automatically

improve the contrast based on exposure fusion and achieve the state-of-the-art perfor-

mance. We use the python implementation5 of this algorithm and an example after

enhancing the contrast is shown in Figure 5.6. It is meaningless to compare the infer-

ence time including the time of enhancement because the CE tool mentioned above is

not optimized and takes too long (about 5s) to process one image.

As shown in Table 5.1, to our surprise, the mAP drops slightly after contrast en-

5https://github.com/AndyHuang1995/Image-Contrast-Enhancement

Chapter 5. Experiments and Results 32

(a) blurred (b) original sharp image

Figure 5.5: A synthetically blurred image and its sharp counterpart which represents the target of

deblurring.

(a) original image (b) after contrast enhancement

Figure 5.6: An example of contrast enhancement.

hancement. While the use of contrast enhancement to improve the performance of

object detection has not been investigated before, it is a surprising finding that CE is

not helpful for object detectors although it produces better visual effects for humans.

One possible reason is that the object detector has learned some sort of feature extrac-

tor for the natural low-light scene and fails to generalize well to the synthetic scene

after contrast enhancement.

5.6 Comparison with RetinaNet

This experiment aims to compare the performance of YOLO and RetinaNet on

BDD dataset. Both RetinaNet and YOLO are one-stage detectors and they share many

similarities in the design, such as feature pyramid and anchor. YOLO is able to run

much faster but fails to achieve the same accuracy as RetinaNet in terms of COCO

Chapter 5. Experiments and Results 33

mAP. This experiment will try to figure out whether RetinaNet can achieve much

higher accuracy than YOLO while still meeting the speed constraint of the self-driving

system.

We adopt the official implementation of RetinaNet in Detectron6 provided by

Facebook Research for this experiment. Our configuration is based on RetinaNet-101-

FPN-800 which was used to obtain the published results on COCO with the following

notable configurations. We use scales ranging from 640 to 800 with a step size of 32

for training and scale 720 for testing. The scale here means the shorter side of the

input image after being resized while keeping the original aspect ratio. For instance,

the resolution for testing is 1280×720. The reason why we do not keep resolution

consistent with the baseline model for fair comparison is that the original RetinaNet

was exactly trained using these resolutions and we tried using the same resolution as

the baseline model, for example, but got much worse results. Other configurations

such as the learning rate, schedule point, the number of GPU, classes, iterations are

also modified accordingly.

From Table 5.1, we can see that RetinaNet outperforms the baseline model of

YOLO by 1.8 points but it should be pointed out that RetinaNet uses a much higher

resolution for both training and inference than YOLO (1280×720 versus 640×384).

Experiment results in 5.4 show YOLO can achieve higher accuracy if it uses the same

resolution. Since YOLO also runs much faster, RetinaNet shows no advantage over

YOLO in our task.

It is reported that RetinaNet with ResNet-101 and FPN can yield mAP nearly 6

points higher than that of YOLO on COCO dataset (39.1 vs 33.0). A possible ex-

planation for the discrepancy between our result and the published one is that our

hyperparameters and hardware might prevent RetinaNet from yielding better results.

For example, the original RetinaNet was trained using 8 GPUs with data parallel syn-

chronous SGD which enables it to benefit from large batch size (e.g., 16). Since only

one GPU is available for this project, only a small batch size of 2 is allowed in our

experiment due to the memory restriction. Our extremely small batch size causes the

learning to be very noisy and also hinders effective batch normalization which usually

benefits from large batch size [38]. In contrast, YOLO handles the memory limit in a

smart way: it divides a batch (e.g., 32 images) into several mini-batches (e.g., 2 im-

ages) and only runs a mini-batch on a GPU at a time. The weights are updated once all

the loss from these mini-batches are collected.
6https://github.com/facebookresearch/Detectron

Chapter 5. Experiments and Results 34

This experiment has important implications for selecting the right object detection

method for a specific application. As pointed out by Huang et al., it is not easy to per-

form apples-to-apples comparison between different object detection methods because

they differ in many ways such as input image resolution, detection scales, choice of

anchors and deep learning framework. Therefore, those published results should be

interpreted with caution.

Firstly, it is unwise to only compare the mAP which usually does not reveal the full

picture. RetinaNet is reported to perform much better than YOLO on COCO dataset.

One of the most important reasons is that RetinaNet resizes the input image such that

the shorter dimension is 800 while keeping the aspect ratio unchanged whereas YOLO

makes the longer dimension be 608. Obviously, the input of RetinaNet has a much

larger resolution and preserves more information. Another reason is that RetinaNet

detects objects on pyramid levels from P3 to P7
7 of which each uses 9 anchors of 3

scales and 3 aspect ratios whereas YOLO detects objects at 3 scales using 3 anchors

at each scale. It is easy to see that YOLO trades accuracy for speed while RetinaNet

improves the accuracy by sacrificing speed.

Secondly, the speed reported in previous papers might not be comparable even if

they are measured on the same hardware platform. Speed is usually reported with-

out giving many details about how it was measured. After checking the code of both

YOLO and RetinaNet, we found that YOLO does not include the time of either pre-

processing (e.g., resize) or post-processing (e.g., NMS) while RetinaNet does. Be-

sides, speed depends on the implementation to a large extent and bad implementation

can affect the speed significantly. For instance, the hand-written resize function in

YOLO takes about 20ms to process one image while the cvResize function provided

by OpenCV only takes less than 1ms.

5.7 Final Model

We aim to train the final model that can achieve high accuracy while still meeting

speed requirements based on the knowledge we have learnt through previous exper-

iments. We will describe how this model combines a number of optimizations and

evolves from the baseline to nearly the state-of-the-art below.

Following the practice in [16, 39, 21], we conduct ablation studies to evaluate the

contribution of different optimization techniques. Table 5.2 presents a summary of

7The resolution of Pl is 2l times smaller than the input image

https://opencv.org/

Chapter 5. Experiments and Results 35

baseline interim final

complete training set
√ √ √ √ √ √ √

balanced training set
√ √ √ √ √ √

exp→ softplus
√ √ √ √ √

5 scales
√ √ √ √

new anchors
√ √ √

resolution 896×512
√ √

training 2× longer
√

mAP 16.9 19.4 21.8 22.5 24.1 24.6 26.4 28.0

Table 5.2: Ablation studies of the final model. The baseline model is combined with

several optimizations to form the final model.

the ablation experiment results. It should be pointed out that all interim models are

trained on the complete training set for 20000 batches to save time (∼ 9 epochs) while

the final model is trained 2× longer (i.e., 40000 batches). Learning rate schedule is

modified accordingly. The mAP in the table above is reported on the same validation

set as before because we can only submit results for test set to the evaluation sever for

a limited number of times.

Compared with the baseline model, this model benefits a lot from the diversity of

the complete training set which is more than 10 times larger than the mini training set

used for previous experiments.

Furthermore, the training set is balanced by sampling mentioned in 3.3 such that

an image that contains an object of a rare class will be used more often for training.

Classes and their corresponding weights which are selected manually are shown in

Table A.1. The weight of an image is the maximum among the weights associated

with all the classes it contains. For instance, an image that contains a motor and a car

will be seen 50 times more often than an image that only contains a car. Using this

simple strategy to balance the dataset improves the mAP by 2.5 points, showing the

importance of dealing with class imbalance.

As previously discussed in 4.2.3, we replace exponential function with softplus to

improve the bounding boxes prediction. This minor optimization helps to increase the

mAP by 0.7 point.

Next, we append another 2 yolo layers at scale P2 and P1 respectively as we did in

5.2 to improve the performance of small object detection. This gives us a significant

increase in mAP.

Chapter 5. Experiments and Results 36

Unlike previous experiment, we use 9 hand-crafted anchors because we learned

from 5.2 that anchors generated by clustering may impede the effectiveness of low-res

scales. The difference between the anchors used in the baseline and the new anchors

here are highlighted in Table A.2. These new anchors result in more even distribution

in different scales. A slight improvement on the mAP is seen though we expect more.

Following the findings in 5.4, this model is then trained and tested at a higher

resolution to increase the mAP further by 1.8 points. We use 896×512 instead of

1024×576 for both speed and memory reason.

Lastly, the mAP rises to 28 after training 2× longer. It is worth mentioning that

it takes about 8 days to train the final model with CUDNN enabled. Some output

examples can be seen in Figure B.2.

Finally, we submitted the detection results for the test set to the evaluation sever

which measures mAP@0.75. Our final model gains 25.75 mAP@0.75 on the BDD test

set, surpassing the third place (20.66) by 5 points on the leaderboard of the Road Object

Detection Challenge for CVPR 2018 Workshop on Autonomous Driving. Despite the

impressive accuracy, our model can also run at 43 FPS on a Tesla V100 GPU. To the

best of our knowledge, our final model is the fastest that can achieve similar or better

accuracy on BDD test set.

We notice that there is still a large gap in mAP@0.75 compared to the first (33.10)

and second place (29.69) on the leaderboard of this challenge. The second place uses

an one-stage detector called CFENet [39] which is based on SSD. CFENet inherits the

architecture of SSD and introduces a Comprehensive Feature Enhancement module

which enhances the shallow features of SSD for detecting small objects. This method

outperforms SSD significantly and is slightly better than YOLO on COCO dataset. On

BDD test set, the single-scale version of this method with input size of 800×800 can

achieve 22.34 mAP@0.75 and 21 FPS while the multi-scale version can achieve 29.69

mAP@0.75. However, it is not clear what multiple inference strategy they adopted

to boost mAP about 7 points and how fast this multi-scale version is. Compared to

their single scale model, our approach using existing method is able to achieve better

mAP at a resolution of 896×512 which means less input data in terms of the number

of pixels. Since there is no literature about the method used by the first place, it is

possible that they rely on ensemble or multiple inference that are too slow for practical

usage. For instance, an ensemble using NMS to merge the results of 10 models each

trained for a distinct class separately might address the class imbalance problem and

improve the overall performance significantly.

Chapter 6

Conclusion

The purpose of this chapter is to summarize our findings and then discuss a few

limitations of our approach as well as ideas for future work.

6.1 Findings

This research set out with the aim of understanding the trade-off between accuracy

and speed of modern object detectors when applied to self-driving cars. In spite of

being limited by the GPU resource, a number of experiments were undertaken to eval-

uate the effect of different ways on the accuracy/speed trade-off using a state-of-the-art

object detector YOLO and a diverse driving dataset BDD.

Two different aspects, namely model and data, were explored to trade-off between

accuracy and speed.

Firstly, we explored possible ways to affect this trade-off by modifying the model

configurations especially the two key design factors: detection scale and anchor. The

effect of pruning or adding detection scales was examined and additional detection

scales using fine-grained features from high-res feature maps benefit the detection ac-

curacy significantly especially for small objects. In contrast, it is not very encouraging

to find that the number of anchors per scale has little impact on the performance.

Secondly, we investigated how image resolution and different image enhancement

techniques can affect the accuracy and speed of object detection. Resolution is among

the easiest and also the most effective ways to trade-off accuracy vs speed. This re-

search supports evidence from previous studies that, in general, high-res images benefit

detection accuracy especially for small objects but also found that there exists an ap-

propriate resolution such that higher or lower resolution will hinder the detection of

37

Chapter 6. Conclusion 38

large or small objects respectively and thus results in worse performance. Specifically,

YOLO can be trained using different input sizes and can also use a different input size

during inference. In both cases, it is somewhat surprising that the accuracy first in-

creases and then decreases when increasing the resolution. The reason for this result

is that higher resolution makes large objects harder to detect. Besides, we also found

that a model trained and tested at a high resolution performs better than a model that

use a high resolution for inference only. While there are many possible choices for

image preprocessing, we consider 2 common enhancement techniques, deblurring and

contrast enhancement, in this project because there are many blurred and low-light

images in the dataset. Due to the absence of a satisfying deblurring tool, we sought

to determine the upper limit of improvement in accuracy if deblurring is employed by

comparing the performance on artificially blurred images and their original sharp coun-

terparts. Although an increase of up to 2 points in mAP can be obtained, deblurring

has limited help for the overall performance because only a small percentage of the

images are blurred. Contrary to expectations, this study found that contrast enhance-

ment leads to worse performance even though the image quality is enhanced visually

to human. The reason for this is not clear but a possible explanation is that there are

a large number of images in low-contrast condition in the training set and the model

may have learned a good way to extract features from these images while the enhanced

images have not been seen during training.

The second research question in this project sought to compare YOLO with Reti-

naNet and determine which is a more suitable detection engine for our application.

Our unanticipated finding was that RetinaNet did not demonstrate any advantage over

YOLO in either accuracy or speed though it is claimed to have much better accuracy.

To demonstrate the effectiveness of our work, we developed a final model that

takes advantage of several optimizations learned from previous experiment, such as

the configuration of resolution, detection scales, anchors and handling class imbalance,

and finally achieves very impressive results on the Road Object Detection challenge.

In conclusion, the insights gained from this study may be of assistance to engineers

who are building object detection systems for a real-time application such as self-

driving car.

Chapter 6. Conclusion 39

6.2 Limitations

We also acknowledge that there are a number of limitations in our approach. First

of all, readers should bear in mind that the study is based on YOLO and this may

affect the validity and usefulness of our findings in a different context. Secondly,

since our work focus on the accuracy/speed trade-off, it is beyond the scope of this

study to improve the algorithm itself, such as redesigning the network architecture or

loss function, which may lead to huge improvement. Lastly, the limitation of resources

does not allow exhaustive experiments. For instance, experiment 5.4 could train YOLO

using a broader range of resolutions and experiment 5.7 should train the interim models

longer until they all converge to the optimal point.

6.3 Future Work

This project provides the following insights for future research.

Since there are many other choices of modifying the input images other than re-

sizing and the two image enhancement approaches explored, a natural progression of

this work is therefore to assess the effects of a wider range of image preprocessing

techniques during inference.

In order to improve the accuracy significantly, a further study with more focus on

improving the model is suggested. Despite the promising result of our final model

on BDD test set, there is still potential to further improve the accuracy of YOLO. Cur-

rently, YOLO struggles with the accuracy of bounding box prediction which hinders its

mAP at a strict IoU like 0.75 [8]. Further research should be undertaken to investigate

the reason and find a good solution.

Several questions still remain to be answered and further experimental investiga-

tions are needed to figure out why RetinaNet fails to outperform YOLO in accuracy

and why contrast enhancement leads to worse performance.

Last but not least, we believe a python implementation of YOLO will facilitate fu-

ture research a lot because the current YOLO is written in C, making it very hard to do

customization. There are a number of attempts to rewrite it using common framework

like Pytorch but they have been unable to reproduce the same results of YOLO due to

bad implementation or hyperparameter tuning.

Chapter 6. Conclusion 40

6.4 Things That Did Not Work

It may be worth mentioning some things that we tried but did not work.

GAN (Generative Adversarial Network) [40] has achieved great success in image

super-resolution [41] and can also handle image downscaling [42]. We intended to

use GAN as a downsampling method to reduce the image resolution before feeding

into the object detection network. A specialized GAN in place of a traditional resize

method such as Bicubic might help to improve the performance of object detection.

However, images can only be downscaled or upscaled by a factor of 2, 3, 4, etc due to

the limitation of CNN while most object detectors requires a specific resolution that is

likely to mismatch the size of the scaled image.

One-stage or dense object detectors usually predict whether an object exists at each

spatial position in the image while only a few locations have objects. Lin et al. argue

that the large class imbalance that occurs in this background and foreground classifi-

cation hinders the performance of dense object detectors because the loss of a great

number of easy examples will overwhelm the loss of rare hard examples. They pro-

pose a novel focal loss to address this problem and demonstrate it enables RetinaNet

to achieve very promising results. Focal loss is a variant of binary cross entropy that

down-weights well classified examples (e.g., prediction is 0.95 while target is 1) and

thus reduces the loss from easy class in YOLO. Inspired by RetinaNet, Redmon and

Farhadi tried to apply focal loss to the objectness prediction of YOLO but it did not

work. They explained this result by the fact that, unlike RetinaNet, class prediction

error does not incur any loss if there is no object. Despite this, focal loss might help

to mitigate the large class imbalance in our dataset. We tried to incorporate focal loss

into YOLO for object classification but the mAP dropped by 1.4 points. It may be that

the imbalance in our dataset is not comparable to the foreground-background class

imbalance.

Bibliography

[1] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque,

Lingjia Tang, and Jason Mars. The architectural implications of autonomous

driving: Constraints and acceleration. In ACM SIGPLAN Notices, volume 53,

pages 751–766. ACM, 2018.

[2] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,

Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,

et al. Speed/accuracy trade-offs for modern convolutional object detectors. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 7310–7311, 2017.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779–788, 2016.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. In Proceedings of the IEEE international confer-

ence on computer vision, pages 2980–2988, 2017.

[7] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C Berg.

Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659,

2017.

41

Bibliography 42

[8] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[9] Khalid Ashraf, Bichen Wu, Forrest N Iandola, Mattthew W Moskewicz, and

Kurt Keutzer. Shallow networks for high-accuracy road object-detection. arXiv

preprint arXiv:1606.01561, 2016.

[10] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature pyramid networks for object detection. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2117–

2125, 2017.

[11] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Mad-

havan, and Trevor Darrell. Bdd100k: A diverse driving video database with scal-

able annotation tooling. arXiv preprint arXiv:1805.04687, 2018.

[12] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Beyond

sliding windows: Object localization by efficient subwindow search. In 2008

IEEE conference on computer vision and pattern recognition, pages 1–8. IEEE,

2008.

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

580–587, 2014.

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference

on computer vision, pages 1440–1448, 2015.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[16] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

7263–7271, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

Bibliography 43

[18] Bharat Singh and Larry S Davis. An analysis of scale invariance in object detec-

tion snip. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3578–3587, 2018.

[19] Bharat Singh, Mahyar Najibi, and Larry S Davis. Sniper: Efficient multi-scale

training. In Advances in Neural Information Processing Systems, pages 9310–

9320, 2018.

[20] Mahyar Najibi, Bharat Singh, and Larry S Davis. Autofocus: Efficient multi-

scale inference. arXiv preprint arXiv:1812.01600, 2018.

[21] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware

trident networks for object detection. arXiv preprint arXiv:1901.01892, 2019.

[22] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convo-

lutions. arXiv preprint arXiv:1511.07122, 2015.

[23] Mohamed Aladem, Stanley Baek, and Samir A Rawashdeh. Evaluation of im-

age enhancement techniques for vision-based navigation under low illumination.

Journal of Robotics, 2019, 2019.

[24] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-

based fully convolutional networks. In Advances in neural information process-

ing systems, pages 379–387, 2016.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common ob-

jects in context. In European conference on computer vision, pages 740–755.

Springer, 2014.

[27] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3213–3223,

2016.

Bibliography 44

[28] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361. IEEE, 2012.

[29] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with

methods addressing the class imbalance problem. IEEE Transactions on Knowl-

edge & Data Engineering, (1):63–77, 2006.

[30] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359, 2009.

[31] Chris Drummond, Robert C Holte, et al. C4. 5, class imbalance, and cost sensi-

tivity: why under-sampling beats over-sampling. In Workshop on learning from

imbalanced datasets II, volume 11, pages 1–8. Citeseer, 2003.

[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-

miller. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

[33] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, and Jian

Sun. Detnet: A backbone network for object detection. arXiv preprint

arXiv:1804.06215, 2018.

[34] Raman Maini and Himanshu Aggarwal. A comprehensive review of image en-

hancement techniques. arXiv preprint arXiv:1003.4053, 2010.

[35] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convo-

lutional neural network for dynamic scene deblurring. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 3883–

3891, 2017.

[36] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and

Jiřı́ Matas. Deblurgan: Blind motion deblurring using conditional adversarial

networks. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 8183–8192, 2018.

[37] Zhenqiang Ying, Ge Li, Yurui Ren, Ronggang Wang, and Wenmin Wang. A

new image contrast enhancement algorithm using exposure fusion framework. In

International Conference on Computer Analysis of Images and Patterns, pages

36–46. Springer, 2017.

Bibliography 45

[38] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[39] Qijie Zhao, Tao Sheng, Yongtao Wang, Feng Ni, and Ling Cai. Cfenet: An

accurate and efficient single-shot object detector for autonomous driving. arXiv

preprint arXiv:1806.09790, 2018.

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In Advances in neural information processing systems, pages 2672–

2680, 2014.

[41] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-

ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan

Wang, et al. Photo-realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4681–4690, 2017.

[42] Adrian Bulat, Jing Yang, and Georgios Tzimiropoulos. To learn image super-

resolution, use a gan to learn how to do image degradation first. In Proceedings

of the European Conference on Computer Vision (ECCV), pages 185–200, 2018.

Appendix A

Supplementary Materials

Figure A.1: Two objects are assigned to the same grid cell on the feature map. Two

anchors with aspect ratios of 1:3 and 3:1, for example, will fit them better than just one

squared anchor. This picture is used under Pexels License.

46

https://www.pexels.com/photo-license/

Appendix A. Supplementary Materials 47

Algorithm 1: Non-Max Suppression
Input: Bounding box predictions from all yolo layers. Each of them has 4

bounding box coordinates (x1,y1,x2,y2), classification probabilities

class probs for all classes and an objectness score ob j indicating

whether there is an object.

Output: Final bounding box predictions.

Initialize: con f thresh = 0.005, nms thresh = 0.45

foreach prediction P do
foreach class c do

P.score[c] = P.ob j ∗P.class probs[c] ;

if P.score[c]< con f thresh then
P.score[c] = 0 ;

end

end

end
foreach class c do

sort all predictions by score[c] ;

foreach prediction A do
if A.score[c]> 0 then

Output A ;

foreach prediction B after A do
if iou(A,B)> nms thresh then

B.score[k] = 0 ;

end

end

end

end

end

Appendix A. Supplementary Materials 48

(a) original (b) horizontal flip

(c) color adjustment in HSV space (d) translation

Figure A.2: Different kinds of image augmentation.

category train motor rider bike bus truck person light sign car

weight 1000 50 50 30 10 5 10 3 5 1

Table A.1: Sampling weights assigned to different classes. The weight of an image is

the maximum weight of the classes it contains. That is to say, an image in the training

set will appear 1000 times if it contains train but just once if it only contains car.

level baseline final

P1 ––––– (8,8)

P2 ––––– (16,16)

P3 (19,19), (44,46), (95,66) (32,32), (32,64), (64,32)

P4 (76,160), (164,109), (255,172) (64,64)

P5 (233,334), (389,262), (513,442) (128,128), (256,256), (512,512)

Table A.2: Comparison of anchors in the baseline and final model.

Appendix B

Examples

(a) (b)

Figure B.1: Output examples of RetinaNet.

49

Appendix B. Examples 50

(a) dense objects (b) big objects

(c) at night (d) blurred

(e) rainy (f) YOLO fails to detect the train

Figure B.2: Output examples of the final model.

Appendix B. Examples 51

(a) Detection output

(b) Ground truth

(c) TPs, FPs and FNs in category car

Figure B.3: Detection output of the final model versus the ground truth. (c) shows

correct, wrong and missed object detections for a specific category car.

	Introduction
	Background
	Evaluation Metric
	Object Detection Methods
	Object Detection for Self-driving Cars
	Accuracy/speed Trade-off

	Dataset
	Berkeley DeepDrive Dataset
	Data Analysis
	Class Imbalance

	Algorithm
	Networks
	Feature Extractor
	Detection Network

	Yolo Layer
	Anchor
	Prediction
	Loss Function

	Data Augmentation

	Experiments and Results
	Baseline
	Detection Scales
	Anchor Density
	Image Resolution
	Image Enhancement
	Deblurring
	Contrast Enhancement

	Comparison with RetinaNet
	Final Model

	Conclusion
	Findings
	Limitations
	Future Work
	Things That Did Not Work

	Bibliography
	Supplementary Materials
	Examples

